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AN APPROXIMATE ANALYTICAL SOLUTION FOR A THREE-DIMENSIONAL HEAT-CONDUCTION 

PROBLEM IN AN AIR-RADIATION HEATING SYSTEM 

S. M. Shilkloper UDC 536.2:536.68 

We offer a method for the calculation of the heat transferred from a system, 
this method being based on replacement of the three-dimensional process by a 
combination of a two-dimensional and a one-dimensional process in various 
cross-sectional planes of the heaten channels. 

The need has recently arisen to conduct thermotechnical calculations related to a vari- 
ety of design solutions for air-radiation heating systems, governed by the transfer of heat 
from the surfaces of barriers through whose thicknesses regular channels have been cut~ and 
these are heated by means of circulating hot air (Fig. i). Rigorous formulation of the 
steady-state problem of calculating the influx of heat from such a system reduces to the des- 
cription of the three-dimensional process determined by the Poisson equation, whose precise 
analytical solution can not be obtained. 

We will look for the solution of the formulated problem by taking into consideration 
the following assumptions: the replacement of the three-dimensional process by a combina- 
tion of a two-dimensional process within the plane of the lateral cross section of the chan- 
nels and of the one-dimensional process in the longitudinal cross section of these planes 
will introduce no significant errors; the temperatures ~c and t can be assumed to be con- 
stant for each lateral cross section of the channel, while the quantities tl, t2, e0, al, 
~= , %0, %a, Ca, na can be assumed to be constant within the framework of the entire system; 
we need not take into consideration the heat released from the ends of the barrier, nor need 
we make provision for the relationship between the amount of heat transferred out of the chan- 
nel and the location of the latter. 

We are familiar with at least three means of solving the two-dimensional heat-condJc- 
tion problem in the plane of the lateral cross section of regular linear heating elements. 
Ananikyan's and Pavlov's [i] use of the method of sources and sinks offers no rigorous phy- 
sical basis and is not applicable to the case t I ~ t 2. 

The solution of the Schwartz-Christoffel integrals (the conformal transformation method) 
obtained by Sander [2] for the problem in the plane of the lateral cross section of the chan- 
nels, because of its complexity, leads to resulting differential equations in the longiuudi- 
nal cross-sectional plane that are insoluble in quadratures. 

Most appropriate to the solution of the formulated problem is the Faxen-Rydberg-Huber 
method. In [3] Faxen published a solution for the two-dimensional heat-conduction problem 
related to a uniform panel with regular linear heating elements for the case t I = tz: 

~b k~ - -  kl ~o b ~ ' ~  cos (2~ix/b) ( 1 ) 
zA - ko Y - -  lY[ + 2 ~ + --z ~ i - -  • 

$=1 
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Fig. 1 Fig. 2 

Fig. I. Design diagram for the air-radiation heating system of a multilayered 
barrier: i) heat generator; 2) entry air channel; 3) reverse air channel; 4) the 
planes of the theoretical lateral cross sections of the barrier. 

Fig. 2. Comparison of the values for the Faxen function (F) with the following 
approximations: the Rydber-Huber approximation (S I + S2); the author's approxima- 
tion (F 0 + F I + F2): r I = 0.01; r 2 = 0.01; a~ = i. 

• ( 2~ilg, 2~iy " " ' b ) +fl~exp ( b ) +/:iexp ( - ~ ) ]  , (1) 
with the exchange of heat to the panel surfaces being treated as one-dimensional, while the 
functions contained in (i) were determined from the following equation (here and beyond, the 
formulas pertaining to side 1 can be symmetrically rewritten for subscripts i and 2 for side 2): 

volA = ln(blndo)+ 2a~o/bko+ F; (2) 

F= ~ ([Ii+ ~s,)]i; (3) 

(~1 2~i) (l +fu) exp(--4~[rO+(~--~o + ~  -) /~i=O, (4) 
b 

from which the heat released from the surface of the panel can be calculated as follows: 

= 2nA~okJbko. (5) 
Rydberg and Huber [4] proposed a generalization of the Faxen method for a multilayered 

construction in which t I ~ t 2. The multilayered nature of the structure is taken into con- 
sideration by the fact that for the massive middle layer the two-dimensional problem is 
solved, while for the outer layers it is a one-dimensional problem that is solved, where a 
is replaced in Eq. (4) by • However, the inequality of the temperatures t I and t 2 is pro- 
vided for by replacement of v0 in Eq. (2) by the conditional quantity derived in the assump- 
tion of steady heat conduction of the panel without any heating elements. 

In accordance with these assumptions, formulas (2)-(5) can be brought to the following 
form: 

qo = (ko t -- kltl -- k2ti)/U; 

q~ = [qo + k2 (tz -- tl)] kd~, 
where the auxiliary quantity U is defined as 

(6) 

(7) 
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Fig. 3. Dependence of Fi, 2 on a,, 2 and ri,2: Fi,2 = - 

a l ,  2 + 2~sri, z 
exp4~sri,2; al,2 = hi,zul,2/10; ri, 2 

a l ,  2 - -  2 ~ s r i ,  2 

Z ! . = 
i=2 i(~I, 2+1)  ' ~1,~ 

= h l , 2 / b .  

2~gobk~ b ) U =  l n u x + F  -k-i, ( 8 ) 

while the function F is determined from the following equations: 
co 

F = ~ ~Ii + (Pi~ -- 2 . (9)  
i (1 -- ~u(pi~) ' 

ax + 2uir 1 
(hi = exp (4uiq). 110 ) 

a~ - -  2 u i q  

Since the derived solution is based on the fact that for the massive middle layer iu 
is a two-dimensional problem that is solved, and that it is a one-dimensional problem that 
is solved for the outer layers, the Blot number for the latter must be less than 0.3: 

Bii = ~iZ Ril<0'3" (11)  
i 
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However, if owing to the massive nature of any i-th layer inequality (Ii) is not satisfied, 
this and the preceding layers must conditionally be connected to the middle layer, with the 

i 

higher values of h I being increased by l 0 ;~=l RIj. 

Let us now solve the one-dimensional problem of heat transfer along the channel. The 
change in the flow of heat at the inlet to and the outlet from section 4, isolated in Fig. 
i, is equal to: 

dt 
dqo = goC a (~o --  t) --  goCa (t o - -  t + dr) = --  ~oCa dL dL. (12) 

This flow is passed through the walls of the channel: 

dq~176 t ~U taka~-~t2k2) dL" (13) 

Having equated (12) and (13), and having solved the di f ferent ia l  equation, we find the 
value of t in the cross section of the channel under consideration here: 

( tlka+t~k~ ) ( tlkx+t2k~ exp Lkob ~ + , (14) 
t =  t o ko gocaU ] ko 

as a result of which we find the sort formula for q0: 

qo = goC a (to t,k, + t~k2 ko ) [1--exp( Lkob 
go~U ) ] �9 (15) 

Let us now determine the value of ql. In section 4, isolated in Fig. I, the following 
quantity of heat is transferred to side i: 

dqz = ~1 bdL" (16) 

Having substituted (14) and (7) into (16), and having solved the di f ferent ia l  equation, we 
obtain 

ql = |% + Lbk~ (t~ --/~)] k~lko. (17) 

To determine the values of de, found in formula (8), we will use the relationship be- 
tween the Nusselt and Reynolds numbers for plates with multiple cavities, experimentally de- 
rived by Ananikyan [5] : 

Nu = O.038Re ~ 7~, (18) 
from which, at an average air temperature of 60~ in the channel, we have 

~o = ~0"038~a ( ~ ) o , r 2  = 3.158d (_~)o.,~ (19) 

(some variations in qa and ~a in the selection of some other average temperature exert vir- 
tually no effect on the quantities which we are trying to determine). In analogy with [i], 
having equated the flows of heat from the channel surface and those through some conditional 
cylindrical layer, we successively obtain: 

t - - re  �9 (20) 
,. t ~ ( t - - ~ n c l =  1 ~ ,,d 

2~o d e 

de=dexp[ X o ( d  ~o,z2 
1,579 \ "~o / ] ; (21) 

(22) 

The practical applicability of these relationships is made difficult by the complexity 
of calculating the function F which depends on four independent arguments ( at , r I, a2 , r2) 
[see formulas (9) and (I0)] and which require rather sophisticated levels of computer tech- 
nology for their solution. (The Molnar hypothesis [6] to the effect that it is sufficient 
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to calculate F to i = 3 to 4, as a rule, is not uniform. For example, with a and r ~n the 
range 0.01 to 0.02 the calculation of F with accuracy to 10 -2 to 10 -3 calls for no less than 
70-90 steps.) Rydberg and Huber [4] therefore proposed an approximate solution of ~ that is 
associated with the separation of the variables ~l~ and cp2~ and the calculation of t~e inte- 
gral exponential function Ei: 

F'~SI"~rS~; (23) 

$1 =--2exp(2al)Ei '(--2al-- '2=rl)-b' ln[1--exp(--4~q)] '  (24) 

which made i t  poss ib le  to cons t ruc t  the r e l a t i o n s h i p  S = f(  a, r )  and to determine F graphi-  
c a l l y .  However, the assumptions made in this case led to significant discrepancy in the 
quantities (S I + S 2) and F. 

We offer a more precise approximation (see Fig. 2): 

F ~ Fo Jr F1 "4- F2; (25) 

F0 = r162 ; (26) 
1 - -  ~1.1 ~2.1 

" 1 ( 2 7 )  

F I = - - E  i(~1~+1) 

This approximation is based on the utilization of the first term in series (9), i.e., F 0 and 
the sum of the subsequent terms, namely, F l and F2, obtained from series (9) in the assump- 
tion that it would be possible to expand this series, i.e., in view of the symmetry of F re- 
lative to ~li and q~i with ~Ii = ~i- The values of F~ and F~ in this case can be determ:~ned 
graphically from Fig. 3. 

In final form, the algorithm for the calculation of q0, q~ and q2 concludes with the 
successive verification of inequalities (ii), such as used in Fig. 3, and formulas (iO), 
(26), (25), (22), (15), and (17). 

The magnitudes of the channel heat transfer obtained with this algorithm were compared 
against natural measurements carried out by Ananikyan at the Scientific Research Institute 
of Health-Physics Engineering (he studied models of series II-04-4 reinforced-concrete 
plates with multiple cavities streamlined with hot air). This comparison demonstrated excel- 
lent convergence of theory and experiment: the average error for the average cavities amount- 
ed to 3.8%. 

NOTATION 

A, auxiliary Faxen function in (i) and (2); a = h• structural parameter of the bar- 
rier; b, distance between the channels (interval), m; Ca, average specific isobaric heat cap- 
acity of air flow, K/(kg'~ d, channel diameter, m; d e , equivalent channel diameter, ob- 
tained by replacement of internal heat transfer I/s 0 by the equivalent resistance of the ad- 
ditional cylindrical layer; El(x), integral exponential function; F, basic Faxen function, 
determined from (3) or (9); F0,I,2, approximate functions in (25)-(27); f, additional Faxen 
functions, determined from (4); go, flow rate of air through channel, kg/sec; h, dist.~nce 
from center of channel to outer barrier surface, m; i, number of term in series; k = [/(i/~+ 
h/l 0 + ~ Rj), unilateral heat-transfer coefficient; k 0 = k I + k~, total heat-transfer coef- 

ficient; L, channel length, m; Nu = =0d/Aa, Nusselt number; q~ heat flow, W, from the out- 
side surface of the barrier of area bL; q0 = ql + q=, total heat transfer from channel[, W; 
q, density of flow of heat from outer surface in the lateral croSS section of the barrier, 
W/m2; q0 = ql + q2, density of channel heat flow in this cross section, W/m2; R, resistance 
of the external layer of the barrier to heat transfer, m2.~ Re = vp.d/qa , Reynolds num- 
ber; r = h/b, structural parameter of the barrier; S, Rydberg-Huber function, determi~Led 
from (24); t, t~, temperature of the air flow, ~ in the channel and at the inlet to the 
channel; tl,2, temperature of the outside medium, ~ U~ auxiliary function, determined from 
(8) or (22); vp, mass velocity of air flow in channel; x, y, coordinates in (I), calculated 
from the center of the heating element; ~, s0, heat-transfer coefficients, W/(m2.~ from 
the outside surface of the barrier and from the inside surface of the channel; Da, coEffici- 
ent of dynamic viscosity for the air flow; ~ = i/(i/~ + Z Rj) incomplete unilateral coeffi- 

cient of heat transfer; 10, la, coefficients of thermal conductivity for the middle layer of 
the barrier and for the flow of air; v, ~o, excess of temperature at some arbitrary point on 
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the barrier and along the axis of the channel; ~c, temperature of the channel surface; ~ , 
additional functions determined from (i0). Subscripts: i, number of series terms; j, num- 
ber of outside layer of the barrier, calculated from the middle layer; 1 and 2, external 
sides of the barrier. 

LITERATURE CITED 

I. L. P. Ananikyan and V. Z. Pavlov, New Systems for the Heating and Ventilation of Indus- 
trial Buildings [in Russian], Moscow (1982), pp. 48-59. 

2. A. A. Sander, The Exchange of Heat in Panel-Radiation Heating Devices [in Russian], 
(1983). 

3. O. H. Fax~n, Teknisk T i d s k r i f t ,  No. 12 (1937), Mekanik, No. 3, 25-28 (1937). 
4. J. Rydberg and C. Huber, Varmeavgivning fran ror i betong eller mark. Stockholm (1955). 
5. L. P. Ananikyan, Inzh.-Fiz. Zh., 41, No. 5, 781-783 (1981). 
6. Z. Molnar, Epuletgepeszet, 9, No.-~, 81-89 (1960). 

MODIFICATION OF A FINITE-ELEMENT METHOD TO CALCULATE TEMPERATURE FIELDS 

AVERAGED OVER ONE COORDINATE 

Yu. T. Kostenko, L. M. Lyubchik, and E. V. Neznamova UDC 526.2 

We examined the approximate solution of an averaged nonsteady boundary-value 
problem of heat conduction in a two-dimensional region bounded by two contin- 
uously differentiable curves. 

When we study nonsteady thermal processes, we encounter a need to calculate the temper- 
ature field in a two-dimensional region of complex configuration. Difficulties in the solu- 
tion in the general formulation of the problem lead to a need to develop methods of simplify- 
ing the original boundary-value problem. For thermotechnical thin bodies, given a small 
temperature drop in one of the directions, simplification of the problem is possible by mak- 
ing a transition to temperatures averaged in the appropriate direction. Such a situation 
arises in the calculation of temperature fields in thin shelves, channels, etc. It is possi- 
ble, in this case, to simplify the computational procedure involved in studying the dynamics 
of thermal processes in a region of complex geometry. 

The average problem dealt with in this study can be solved by the method of finite elem- 
ents [i ]. 

Let us examine a two-dimensional region ~, bounded by two continuously differentiable 
curves x I = a (y), x 2 = b(y), 0 ~ y ~ d, 0 < a (y) < b(y) (see Fig. i). We will assume that 
at the initial instant of time the temperature 80(x, y) of the region is higher than the 
temperature 8 m of the medium. The transfer of heat from the side surface S of a cylinder, 
whose cross section is the region ~, follows the law 

--~ a8 1 =~(010n s s'Om)" 
The original boundary-value problem with boundary conditions of the lllrd kind has the 

form: 

Cy a~" ~ -~ ~- fs~ g' x)' (1) 
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